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6D Object Pose Verification via Confidence-based Monte Carlo Tree
Search and Constrained Physics Simulation

Dominik Bauer1, Timothy Patten1, Markus Vincze1

Abstract— Precise object pose estimation is required for
robots to manipulate objects in their environment. However,
the quality of object pose estimation deteriorates in cluttered
scenes due to occlusions and detection errors. The estimates only
partially fit the observed scene, or are physically implausible. As
a result, robotic grasps based on these poses may be unsuccess-
ful and derived scene descriptions may be unintelligible for a
human observer. We propose a hypotheses verification approach
that detects such outliers while, at the same time, enforces
physical plausibility. On one hand, this is achieved by a tight
coupling of hypotheses generation with the verification stage to
guide the search for a solution. On the other hand, we integrate
a constrained physics simulation into the verification stage to
constantly enforce physical plausibility. By constraining the
simulated objects to the most confident point correspondences,
we prevent the estimated poses from erroneously diverging
from the initial predictions. We thereby generate a plausible
description of the observed scene. We evaluate our method on
the LINEMOD and YCB-VIDEO datasets, and achieve state-of-
the-art performance.

I. INTRODUCTION

For robots to autonomously operate in the real world, they
require a reliable estimate of the pose of objects around them
to be able to manipulate objects of interest [17]. In human-
robot interaction, it is furthermore essential for the robot to
be able to explain why and how its estimates are computed.
Thereby, the robot’s actions become understandable to the
human interaction partner as to build and maintain trust and
transparency [3]. Such explanations help to make the robot’s
belief state and decisions understandable and the human
interaction partner more tolerant to observed errors.

The recent SIXD challenge [10] shows advances in object
pose estimation; but also current limitations. Pose estimation
methods begin to fail when the objects of interest have
little textural information, the robot perceives noisy RGB-
D data, or the scene exposes a high amount of clutter. Due
to detection errors, such as confusing different objects in the
observation, the estimated poses can be far-off the actual
object pose. Furthermore, the precision of the estimated
poses can be low even matching the correct object. Besides
falsely matching to parts of an object, not considering global
scene consistency is a source for inaccuracies, resulting in
estimates that may feature intersecting or floating objects.
The computed scene descriptions are, therefore, potentially
inconsistent on a global level and physically implausible. In
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Fig. 1: The initial pose hypothesis with the object half-way
below the ground plane (left) and the refined pose after the
verification stage with the object resting on the plane (right).

object manipulation, for example, this may result in failed
grasps.

Existing hypotheses verification frameworks [2], [1], [21],
[14], [15] aim to reduce inconsistencies in the scene de-
scription by reasoning about the scene on a global level, i.e.,
considering all hypotheses at once. Verification is considered
a post-processing step in these frameworks, ignoring most
of the information gathered during hypotheses generation.
These methods construct complex cost functions [2], [1] for
which parameters must be tuned for a specific dataset. Creat-
ing an exhaustive set of hypotheses [14] or performing search
exhaustively [15] are alternative approaches to increase per-
formance in the absence of discriminative information; albeit
significantly increasing computation time.

During hypotheses generation, information beyond the
pose is generated that enables the discrimination between
hypotheses. For example, the ranking, confidence or fitness
of a pose hypothesis can be used to consider more promising
candidates first. Also, the position and fitness of individual
point correspondences with the observation contain infor-
mation that can reduce the solution space the hypotheses
verification has to consider.

To that end, we propose a two-staged framework that
closely couples hypotheses generation and verification to
leverage available information. We incorporate physics sim-
ulation into the verification stage similar to [14] but impose
soft-constraints to limit the objects’ movements to remain
close to the original estimate. This is done by scaling the
forces of the point constraints by the confidence of point
correspondences. The verification is guided by a heuristic
that uses the confidence of the generated hypotheses. The
result is a subset of pose hypotheses that best explains the
observation on a global scene level.

We propose a hypotheses verification framework based on
Monte Carlo tree search (MCTS). By the use of physics
simulation during the simulation phases of the tree search,
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(a) Rendered view of the scene
in (b). Note the cap on the
model of the bleach bottle that
is missing in (b) and (c).

(b) By enforcing the drill to
stand on the table, we achieve
a plausible and more precise
pose.

(c) The bottle in the back is
falsely matched to the drill
during HG but detected as
false positive during HV.

(d) Error case: The clamp is
falsely omitted. The predicted
foam brick (second from right)
moves the pen resting on it.

Fig. 2: Qualitative examples. The red contours show the output of our HG, green contours show the solution after HV.

solutions are generated that are inherently physically plausi-
ble. We show improvement over previous work by:
• using confidence-based heuristic to guide verification
• integrating physics simulation, constrained by point

correspondences, with hypotheses verification
• detecting false positives that are far-off from the true

object pose while refining near-by hypotheses in a
physically plausible manner

• achieving state-of-the-art performance on the LINEMOD
and YCB-VIDEO datasets.

In the following, we discuss related work in Section II,
give a detailed description of our proposed approach in Sec-
tion III, and present results on LINEMOD and YCB-VIDEO
using the ADD, ADD-S and VSD metrics in Section IV. A
discussion of the improvements and limitations can be found
in Section V.

II. RELATED WORK

A. Object Pose Estimation

Hodan et al. [10] compare several of state-of-the-art meth-
ods in object pose estimation and identify four major research
directions. Template-based methods [8], [11] precompute
different views of the objects of interest observed under a
discrete set of rotation angles. During inference, the task
is to first locate known objects in the observation and then
find the corresponding view to deduce the object rotation.
Methods based on Point Pair Features (PPF) [7], [18] are
trained by precomputing these features for the objects of
interest and storing them in a discretized hash table that is
used to match scene points to model points via a voting
scheme during pose estimation. For every two model points,
such a feature consists of their distance, the angle between
their normals and the angle between each normal and the
connecting line. Methods based on 3D local descriptors, such
as SHOT [16] or PPFH [6], find correspondences between
features computed on a model and the observed scene to
generate pose candidates that are then refined using ICP.

Finally, several learning-based methods [20], [12], [19]
tackle pose estimation using CNNs. Xiang et al. [20] pro-
pose an architecture that jointly estimates semantic labels,
translation and rotation from RGB images. Li et al. [12]
furthermore include depth information in their architecture.

Building on this work, Wang et al. [19] propose to fuse
appearance features predicted from RGB with geometric fea-
tures predicted from the depth image into a single pixel-wise
embedding. Based on these pixel-wise features, a candidate
pose is predicted per pixel. The highest scoring prediction
per object instance mask is returned as a pose for this object.
We base our hypotheses generation on this work.

B. Hypotheses Verification

Narayanan et al. [15] approach the pose estimation prob-
lem by generating an exhaustive set of possible scene con-
figurations and then searching for the best solution in a
verification scheme. Each scene configuration is rendered and
the resulting depth image is compared to the observed depth
image. While the resulting estimates have high accuracy, the
authors also report an average runtime of 6.5 minutes.

Aldoma et al. [1] use SHOT to generate a set of pose
hypotheses. The authors use Simulated Annealing to search
for the subset of hypotheses that best fits the observation on
a scene level. To quantify the fitness of a candidate solution,
a cost function is constructed based on geometric cues.
Additional terms penalize multiple assignments of scene
points to different objects and a so-called “clutter term” pe-
nalizes hypotheses that only partly fit smooth surface patches.
In follow up work [2], the cost function is extended by
considering color information and a comparison of different
meta-heuristics for finding a solution. Our solution definition
is closely related to the formulation presented in this work.

Most related to our hypotheses verification method, Mitash
et al. [14] propose the use of MCTS for hypotheses verifi-
cation and the use of physics simulation to enforce scene
consistency. The authors utilize the basic UCT algorithm for
MCTS and evaluate their method on a non-public dataset.

III. OBJECT POSE VERIFICATION

Given a RGB-D image as input, object-instance masks and
their corresponding class labels are estimated using SegNet
[4]. To integrate the information from hypotheses generation
(HG) with hypotheses verification (HV), we require a HG
method to provide a set of diverse pose hypotheses, informa-
tion on their quality as well as a set of correspondences that
allow us to constrain the object pose in physics simulation.
We use the method proposed by Wang et al. [19] to generate
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Fig. 3: Overview of the MCTS algorithm. For our method
we adapt the tree policy during expansion (bold) and the
computation of the reward (triangle). Adapted from [5].

such hypotheses; although our approach is able to deal with
other HG methods as long as they can provide the required
information just mentioned. For example, the PPF-based
method by Vidal et al. [18] could be used instead.

The HV stage is tasked with determining the set of
hypotheses that globally best explain the observed scene. For
this, we initialize MCTS with the generated pose hypotheses.
Starting from the empty set, MCTS adds one hypothesis per
expansion and evaluates the new solution set by simulating
the predicted scene. To determine which hypothesis should
be selected next for expansion, we propose a heuristic based
on the hypotheses’ confidence values. MCTS is stopped after
a fixed number of iterations to limit total runtime and the
highest-reward solution is returned.

In the following, we describe our approach in more detail.

A. Hypotheses Generation

For each object-instance mask, we predict a pose hy-
pothesis for each corresponding scene point and provide a
confidence value for the respective estimate. As in [19], the
highest-confidence pose hypothesis is refined and returned
as a pose estimate for this object instance. To generate a
set pose hypotheses with more variation, we trigger HG
repeatedly with different random samples of the observed
object instance. Our proposed HG method uses less samples
than suggested in [19] to obtain a broader set of hypotheses.
To increase variance of the pose hypotheses further, we
increasingly erode the precomputed segmentation mask. This
variance is desired as to generate a set of hypotheses that
has a higher chance of containing the true object pose that
should be found by HV. As a measure of quality for each
pose hypothesis, the confidence value that is returned by
the network is used. Finally, as each sampled point predicts
a pose hypothesis and reports a confidence value, the 100
most confident hypotheses are selected as soft-constraints
that should be satisfied during physics simulation in HV.

B. Hypotheses Verification

The task of HV is to select a subset of hypotheses that
best explains the scene. A solution X can be described by
n ·N binary variables, where n is the number of hypotheses
and N the number of object instances. Each x ∈ X takes a
value of 1 if the corresponding hypothesis is used in the
solution and 0 otherwise. Exhaustively searching through

all possible permutations quickly becomes intractable with
increasing number of objects and hypotheses per object. For
example, the YCB-VIDEO dataset contains scenes with 3
to 9 objects per scene. For 5 hypotheses per object and
no further limitations on the solution there are 215 to 245

possible solutions.
1) Monte Carlo tree search: MCTS is an algorithm that is

successfully used in game-playing to solve similar tasks with
large search spaces and potentially costly state evaluations.
An illustration of the basic algorithm is shown in Figure
3. The initial step in each iteration is to select the most
promising candidate solution for which not all direct children
have been expanded. Using the UCB1 policy, the algorithm
balances the exploitation of known rewarding solutions with
the exploration of new regions of the search tree. Once this
node is selected, a new child solution is created and the
tree is expanded. In the basic version, also used in previous
work [14], this new child solution is chosen randomly. We
propose to, instead, use a heuristic to expand more promising
candidates first. The next step in the algorithm is to evaluate
the expected reward of the new solution by simulating a
rollout. In a rollout, the child solution is expanded using the
default policy until a terminal state is reached. The reward for
this terminal state is computed and backpropagated, starting
from the new child solution and following the selection path
up to the root node. Thereby, the reward statistics for each
node can be updated for use by the UCB1 policy in the next
iteration. The search can be stopped any time, offering speed
to be traded for solution quality.

2) Solution space: Assuming there can only be one true
hypothesis per object, we can reduce the number of possible
solutions for the previous example of 3 object instances with
5 hypotheses each from 215 to 915 possibilities. We model
the problem as follows: Starting with the empty set as an
initial candidate solution, we iteratively activate hypotheses.
Activating more than one hypothesis per object instance is
not allowed. The hypothesis for an object instance can there-
fore not change once it has been activated. Other subtrees of
the search tree evaluate these alternative hypotheses.

3) Heuristic tree policy: Evaluation individual solutions
is nevertheless costly. Guiding the search towards promising
regions first allows the search to be stopped early, which
saves computation time. We propose to leverage the con-
fidence values of hypotheses compute during HG for this
task. Instead of randomly selecting the next hypothesis, the
probability of a hypothesis to be chosen is weighted by its
confidence value. In a first step, one of the currently inactive
object instances is chosen with a probability proportional to
the sum of the confidence values of their inactive hypotheses.
Next, one of the currently inactive hypotheses of this object
instance is randomly chosen, again weighted by their con-
fidence value. As a result, the search is guided towards the
more promising objects and their more promising hypotheses
first.

4) Physics simulation: To determine the reward of a new
candidate solution, we apply a physics simulation, render
the object models in the resulting poses and compare the
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rendered depth values with the observed ones. However,
naı̈vely applying physics simulation to a candidate solution
has two main problems: First, the unknown mass distribution
of the objects may cause unexpected ways. Without, for
example, considering the heavy battery pack of a power
drill, the object easily topples over in simulation. Second, as
the solution may include intersecting objects, the resulting
repulsion forces can push close-by objects away or over.

The center of mass of the objects is moved close to their
bottom, with respect to their canonical pose, to tackle the
problem of unknown mass distribution. By computing a
convex decomposition of the object meshes used as colliders,
the effect of intersecting objects is lessened. In addition, soft-
constraining the movement of the objects to their highest-
confidence point correspondences limits the effect of the
repulsion forces. Per point and confidence value, we set a
constrain between the point on the object and its predicted
position in world space. Each constrain can apply a maxi-
mal force that is proportional to its confidence value. The
constrained physics simulation is able to generate plausible
poses while circumventing the problem of exaggerating the
instability resulting from estimation inaccuracy.

5) Reward function: After the physics simulation, the
final step of evaluating a candidate solution consists of
rendering the corresponding depth image and comparing it
to the observed depth. We mask-out all points that have
neither a depth value in the rendering nor the observation.
The reward r is then computed as follows:

r = ∑δ (R,S) (1)

δ (R,S) =

{
1, if |dR−dS|< τ for dR,dS ∈ R,S
−1, otherwise

(2)

where R is the masked rendered depth and S the masked
observed depth. We choose τ to be 1cm for evaluation on
both datasets.

IV. RESULTS

For our evaluation, we want to compare our baseline
HG method (Ours (HG)) and the full HV pipeline (Ours
(Full)) against several state-of-the-art pose estimation meth-
ods. Since our HG method is based on [19] and to ensure
comparability with the two methods [19], [20] we evaluate
against on the YCB-VIDEO dataset, we use the trained
weights from [19] and the pre-computed segmentation masks
provided by [20] that are used as well in [19]. Both methods
also provide results for the LINEMOD. However, the classes
3 and 7 of LINEMOD are not included in the pre-trained
network and are thus missing from our evaluation.

On the LINEMOD dataset, we additionally evaluate against
the two top scoring methods in the SIXD challenge [10]
based on the VSD metric used therein, namely the methods
of Hodan et al. [11] (Hodan-15) and Vidal et al. [18]
(Vidal-18). Additionally, we evaluate against PoseCNN with
DeepIM [20], [13] (PoseCNN + DeepIM) and DenseFusion
[19] (DenseFusion) on the ADD metric. The ADD-S metric
is used for the two symmetric objects. This is due to both

methods reporting results using these metrics. The respective
results are taken from [19].

On the YCB-VIDEO dataset, we evaluate against
PoseCNN with ICP refinement [20] (PoseCNN + ICP) and
DenseFusion. The authors of [19] report results on the ADD-
S metric, which use correspondingly for our evaluation.
Qualitative results on this dataset are shown in Figure 2.

A. Results on LINEMOD

The performance on the LINEMOD dataset is already
saturated for state-of-the-art methods. Still, we are able to
report a significantly increased performance on both the
ADD and the VSD metrics. Since the LINEMOD dataset
features only one target object per scene, the results only
show the performance of the constrained physics simulation
and reward function. The MCTS has no impact on the
solution as it will exhaustively try all solutions. We set the
number of hypotheses per object instance to 10 and the
threshold τ in our reward function to 1cm. The HG takes
approximately 20ms per pose hypothesis and the HV takes
approximately 80ms to evaluate a candidate solution. The
total runtime, including the segmentation stage and additional
processing, is 1–2s per test target. Note that Hodan et al.
[11] report an average runtime of 12.3s per test target and
the method by Vidal et al. [18] takes 4.7s on average.

Table I shows the results on the LINEMOD dataset for the
ADD metric in the left sub-table and for the VSD metric
in the right sub-table. Note that, for the VSD metric, we do
not report values for classes 3 and 7 as our HG does not
include them. We provide the means excluding these classes
in parentheses, marked with an asterisk, for a fair comparison
of the overall mean.

B. Results on YCB-VIDEO

The YCB-VIDEO dataset features 3 to 9 objects per scene.
In the test set used in [19] and [20], there are 3 to 6
objects per scene. Moreover, the pre-computed segmentation
masks contain misdetected object instances. This allows us
to evaluate the performance of our MCTS-based HV as false
positives have to be omitted and different pose hypotheses
may influence one-another. Table II shows the results on
the YCB-VIDEO dataset for the ADD-S metric. Overall, we
report a slight increase of our HG method over previous
work. We also show that our HV method allows a further
improvement of these results, matching or outperforming
other methods on the < 2cm and the AUC measures.

For the AUC measure, in accordance to [19], we set the
highest threshold on the ADD-S to 10cm. The number of
hypotheses per object instance is set to 5, the threshold τ in
our reward function to 1cm and the number of iterations in
the MCTS was limited to 200. This means that, out of all
possible combinations of hypotheses for the 3 to 6 objects in
the test set, at most 200 solutions are evaluated. We motivate
this choice as follows: In the worst case of 6 objects with
5 hypotheses each, we spend 30 iterations on the initial
expansion and need at least 105 iterations to get to a full
candidate solution of 6 hypotheses. To allow for different
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TABLE I: Results on LINEMOD. Symmetric objects in italics, best results are highlighted bold. The difference between Ours
(HG) and Ours (Full) is given in parentheses. Left: ADD-S metric [20] for symmetric objects, ADD metric [8] otherwise.
Right: Recall scores in percent for the VSD metric ([10], [9]) computed with τ = 0.02, δ = 0.015 and θ = 0.3. In the
“overall” row, we provide the mean excluding “bowl” and “cup” for the methods [11] and [18] in parentheses.

.

Class [20], [13] [19] Ours (HG) Ours (Full) [11] [18] Ours (HG) Ours (Full)
≤ 0.1d ≤ 0.1d ≤ 0.1d ≤ 0.1d θ < 0.3 θ < 0.3 θ < 0.3 θ < 0.3

01 ape 77.0 92.3 91.1 92.9 (+1.8) 91 89 96 98 (+2)
02 vise 97.5 93.2 92.7 95.5 (+2.8) 97 96 85 92 (+7)
03 bowl – – – – 79* 91* – –
04 camera 93.5 94.3 93.0 96.3 (+3.3) 97 94 94 97 (+3)
05 can 96.5 93.1 92.2 96.1 (+3.9) 91 92 89 94 (+5)
06 cat 82.1 96.4 95.6 96.9 (+1.3) 97 96 92 96 (+4)
07 cup – – – – 73* 89* – –
08 driller 95.0 87.0 85.8 90.6 (+4.8) 69 89 83 89 (+6)
09 duck 77.7 92.3 91.5 94.7 (+3.2) 90 87 96 98 (+2)
10 eggbox 97.1 99.8 99.9 99.9 (0.0) 97 97 86 95 (+9)
11 glue 99.4 100.0 100.0 100.0 (0.0) 81 59 88 92 (+4)
12 puncher 52.8 92.1 91.4 94.6 (+3.2) 79 69 90 95 (+5)
13 iron 98.3 97.0 96.4 97.9 (+1.5) 99 93 94 97 (+3)
14 lamp 97.5 95.3 95.3 97.0 (+1.7) 74 92 88 92 (+4)
15 phone 87.7 92.8 91.4 94.9 (+3.5) 95 90 86 92 (+6)
Overall 88.6 94.3 93.6 95.9 (+2.3) 87 (89*) 88 (88*) 90 94 (+4)

candidate solutions to be considered, and to add some safety
in expectation of additional false positives while still keeping
computation time reasonable, we double this to a maximum
number to 200 iterations. The hypothesis generation takes
20ms per pose hypothesis. The runtime per MCTS iteration
including evaluation of the candidate solution is 90ms on
average, resulting in a total runtime of about 18s.

As the results for the previous methods show, the perfor-
mance on the dataset is already saturated – a stricter metric
would be required to further differentiate between methods.
This is due to the ADD-S metric effectively ignoring rotation
errors around symmetry axes. As a result of this saturation,
the biggest improvements over our baseline method can be
observed for the classes 10, 51, and 52 where hypotheses
have large variability. For example, different handles of the
clamp in classes 51 and 52 are fitted, or hypotheses are
mirrored around the joint. Our method is able to select
the best fitting hypotheses, reducing the variability of the
selected pose and thus improves the performance.

Another aspect that we observed is that the solution after
the verification can be worse than simply using the first
generated hypothesis per object. On one hand, this is due
to the limited number of 200 solutions we explore during
the verification. The search may, as a result, only return
a local minimum. On the other hand, we rather strictly
evaluate candidate hypotheses. The resulting reward seems
to underestimate the quality of certain hypotheses or to
aggressively classify them as false positive.

V. DISCUSSION

As discussed in Section IV, the performance on the
LINEMOD and YCB-VIDEO datasets is already saturated.
We plan to evaluate our method on more challenging datasets
with, for example, heavier occlusion or texture-less objects.
Stricter metrics and thresholds may also further differentiate
between methods. For our goal of achieving a physically

plausible scene description, a stricter metric could penalize
intersecting objects or missing support relations.

However, a general problem when using physics sim-
ulation is the need for knowing the direction of gravity
and, ideally, the supporting plane and all supporting objects.
Without gravity, we can only resolve intersections. Without
support, objects simply fall to the ground. How these cases
can be handled would be a route for future improvements
to the presented method. For example, further constraining
object movement based on the observed evidence could
remove the need to know all interacting objects a-priori.

The performance of our HV method is currently limited by
the amount of solutions we can consider. The results on the
YCB-VIDEO dataset, presented in Section IV-A, illustrate
this problem: Since we only allow for 200 iterations, MCTS
might not be able to explore better performing areas of
the tree. A suboptimal candidate solution is returned in
such cases. This problem could be tackled by constraining
the search space further or constructing a more informative
reward function. However, the main limiting factor is the
runtime of an individual MCTS iteration.

In our current implementation, one iteration takes approxi-
mately 90ms. While this is a halving of the runtime of 200ms
per iteration reported by [14], it is still restrictive for use in a
robotic application. The main part of these 90ms are due to
the physics simulation with 60ms and the read-back of the
rendered image with 20ms. Especially the read-back could
be accelerated by computing the reward on the GPU and
returning one value instead of rendered images.

VI. CONCLUSION
We presented a hypotheses verification method for 6D

object pose estimation. Our approach is based on closely
integrating information from hypotheses generation with
verification. The confidence values per hypotheses are used
to guide verification while the confidence values and posi-
tions of point correspondences are used to constrain physics
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TABLE II: Results on YCB-VIDEO (ADD-S [20]). Symmetric objects in italics, best results are highlighted bold. The
difference between Ours (HG) and Ours (Full) is given in parentheses.

Class PoseCNN + ICP [20] DenseFusion [19] Ours (HG) Ours (Full)
AUC < 2cm AUC < 2cm AUC < 2cm AUC < 2cm

002 master chef can 95.8 100.0 96.4 100.0 95.5 100.0 94.7 (-0.8) 100.0 (0.0)
003 cracker box 92.7 91.6 95.5 99.5 95.4 99.5 95.0 (-0.4) 100.0 (+0.5)
004 sugar box 98.2 100.0 97.5 100.0 97.2 100.0 96.7 (-0.5) 99.9 (-0.1)
005 tomato soup can 94.5 96.9 94.6 96.6 96.8 100.0 96.8 (-0.1) 100.0 (0.0)
006 mustard bottle 98.6 100.0 97.2 100.0 96.9 100.0 96.3 (-0.6) 100.0 (0.0)
007 tuna fish can 97.1 100.0 96.6 100.0 96.5 100.0 96.9 (+0.4) 100.0 (0.0)
008 pudding box 97.9 100.0 96.5 100.0 95.3 99.5 95.3 (0.0) 99.5 (0.0)
009 gelatin box 98.8 100.0 98.1 100.0 97.7 100.0 97.0 (-0.7) 100.0 (0.0)
010 potted meat can 92.7 93.6 91.3 93.1 91.8 94.4 95.6 (+2.0) 99.1 (+7.3)
011 banana 97.1 99.7 96.6 100.0 95.6 99.7 96.3 (+0.7) 100.0 (+0.3)
019 pitcher base 97.8 100.0 97.1 100.0 97.2 100.0 95.6 (-1.6) 100.0 (0.0)
021 bleach cleanser 96.9 99.4 95.8 100.0 95.1 100.0 95.0 (-0.1) 100.0 (0.0)
024 bowl 81.0 54.9 88.2 98.8 89.1 100.0 92.4 (+3.3) 100.0 (0.0)
025 mug 95.0 99.8 97.1 100.0 96.0 99.8 95.5 (-0.5) 100.0 (+0.2)
035 power drill 98.2 99.6 96.0 98.7 95.7 99.1 95.7 (0.0) 100.0 (+0.9)
036 wood block 87.6 80.2 89.7 94.6 91.2 99.2 91.7 (+0.5) 100.0 (+0.8)
037 scissors 91.7 95.6 95.2 100.0 91.9 100.0 92.8 (+0.9) 100.0 (0.0)
040 large marker 97.2 99.7 97.5 100.0 97.3 100.0 96.6 (-0.7) 100.0 (0.0)
051 large clamp 75.2 74.9 72.9 79.2 74.1 80.1 82.6 (+8.5) 88.1 (+8.0)
052 extra large clamp 64.4 48.8 69.8 76.3 81.8 87.5 89.2 (+7.4) 94.2 (+6.7)
061 foam brick 97.2 100.0 92.5 100.0 92.5 100.0 92.3 (-0.2) 100.0 (0.0)
Overall 93.0 93.2 93.1 96.8 93.4 98.0 94.3 (+0.9) 99.1 (+1.1)

simulation. This physics simulation is an integral step of our
verification scheme that uses Monte Carlo tree search to find
a solution that fits the observation in a globally consistent and
plausible manner. Using our proposed hypotheses verification
method, we are able to achieve state-of-the-art performance
on both the LINEMOD and the YCB-VIDEO dataset.
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